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We report the results of a series of simulations of a susceptible-infected-recovered epidemic model in
heterogeneous spatial metapopulation networks with quantitative knowledge of human traveling statistics that
human travel behavior obeys scaling laws in the sense of geographical distance and period of waiting time. By
tuning the edge length distribution of the spatial metapopulation network, we can conveniently control the
distribution of human travel distance. The simulation results show that the occurrence probability of global
outbreaks is significantly dependent on the characteristic travel distance, the characteristic waiting time, and
the memory effects of human travel. We also present some preliminary results on the effects of travel restric-
tions in epidemic control.
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I. INTRODUCTION

The study of human activity patterns at different spatial
and temporal scales has been paid much attention in recent
years, such as the bursts and heavy tails in human dynamics
�1–3�, the evolution of human trail systems �4�, and the scal-
ing laws for the movement of people between locations in a
large city �5�. Human activity is not only the driving force of
many observed complex social phenomena, but also has sig-
nificant impact on many related dynamical processes. For
example, Vazquez et al. �6� investigated the impact of non-
Poissonian human activity patterns on the email worm’s
spread and proved the failure of the Poisson approximation
for the inter-event time distribution that is currently used in
all epidemic models. In epidemiology, human travel has been
treated as one of the important ingredients responsible for
large-scale epidemic outbreaks �7–11�. These studies have
mainly focused on the role of the large-scale properties of
airline or railway transportation networks in global epidem-
ics, where the human travel process has been oversimplified
due to the lack of quantitative knowledge of human traveling
statistics. Recently, Brockmann et al. �12� analyzed the dis-
persal of bank notes in the United States and extracted the
scaling laws of human travel; i.e., the human travel distance
r and the rest time tw between displacements obey the heavy-
tailed distributions p�r��r−�1+b� and p�tw�� tw

−�1+a�, respec-
tively, where they predicted a=b=0.6. Consequently, it has
an important chance to help understand how human travel
patterns affect the geographical spread of human infectious
disease.

In modeling of the large-scale transmission of infectious
disease, Watts et al. �13� concluded that the metapopulation
models offer a potentially useful compromise between com-
partment models and networks, and they proposed a hierar-
chical metapopulation model to investigate the multiscale
and resurgent epidemics in large populations. Colizza and

Vespignani �14� introduced heterogeneous metapopulation
networks with a simplified human travel scheme to analyze
the large-scale spread of epidemics and found that the
spreading dynamics was jointly determined by the mobility
rate of individuals and the topology of the metapopulation
network. These studies imply that the quantitative descrip-
tions of more realistic human movement in geographical en-
vironment should be taken into account in epidemic spread-
ing. In this paper we take the advantage of the spatial
networks or geographical networks, which have been re-
cently studied by several authors �15–17�, to explicitly incor-
porate the geographical ingredient into our model. Specifi-
cally, we introduce a spatial matapopulation network to
model the population structure. Each node of the spatial
metapopulation network represents a subpopulation, and in-
dividuals can travel from one subpopulation to another sub-
population along the network links. The distribution of hu-
man travel distance can be regulated conveniently by
adjusting the distribution of link length of the spatial metapo-
pulation networks. In each subpopulation, we take the SIR
epidemic model as a simple description of the local infection
dynamics, which is coupled by the travel process. Through
this paradigm, we intend to investigate the impact of the
human travel pattern on the spreading process of infectious
disease.

II. MODEL

In our model, the total population is divided into N sub-
populations, each of which is represented by a node of the
metapopulation network. We assume that each node i is ini-
tially occupied by Ni individuals and has the node degree ki;
i.e., the node i is connected to other ki nodes. In this way,
these subpopulations are connected by a network with degree
distribution pk and individuals can diffuse along the network
links according to their travel pattern. In order to incorporate
the scaling law of human travel into our model, we define the
network substrate on a two-dimensional square space of uni-
tary length on the x-y plane with periodic boundary condi-
tions. Specifically, each node i �i=1,2 , . . . ,N� is randomly
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assigned a pair of values �xi ,yi� to represent its coordinates
on the geographical plane. We assume that each coordinate is
an independent and identically distributed random number
drawn within the interval �0,1�. Initially, m fully connected
nodes, labeled by 1,2 , . . . ,m, respectively, are randomly dis-
tributed in the square, and then at each time step t �t=m+1,
m+2, . . . ,N�, a new node labeled by t is added to the net-
work and connected to m preexisting nodes according to the
attachment probability that the node i �i=1,2 , . . . , t−1�
would be chosen to connect to the newly added node t:

�i�t� � ki
��t�/dit

�, �1�

where dit is the Euclidean distance between the nodes t and i,
which is measured using periodic boundary conditions, and
� and � are two tuning parameters governing the degree
distribution, and link length distribution, respectively
�16–18�. The degree distribution of the resulting network can
be obtained by using mean-field theory �16,18� for 0��
�1 and finite � and is given by

p�k� = Am−1k−�e−A�k1−�−m1−��/m�1−��, �2�

where A is a constant and can be determined by the require-
ment of the normalization �16�. For �=1, mean-field theory
yields the power-law degree distribution pk�k−3 �16�. How-
ever, for ��1, an analytical solution is unavailable because
most of the nodes are connected to a few number of nodes.
Figure 1�a� illustrates the degree distributions for different
parameters of �, which supports well the analytical results.
The link length distribution, which is defined as the probabil-
ity that a randomly selected link has the length r, is given by

p�r� � r−�+1, �3�

where 1���4 and 0���1 �16,17�. Figure 1�b� illustrates
the link length distributions, which are uniform for �=1 and
heavy tailed for ��1, agreeing well with analytical predic-
tions. It should be noted that the link length is measured
under the periodic conditions; thus, it can reach at most
�2 /2, which also can be seen in Fig. 1�b�.

Our purpose is to adopt the heavy-tailed distribution of
the link length to model the scaling law of human travel
distance. In the following sessions, we fix �=1.0 to maintain
the power-law degree distribution and vary � from 1.0 to 4.0
to tune the link length distribution. The human travel process
is modeled as follows.

�i� Traveling. For each individual h initially located in
node i, at each time step, it will leave node i with probability
pjump and enter into a node j that is randomly selected from
the neighboring nodes of node i, then go to step �ii�; other-
wise, individual h will remain in the node i.

�ii� Waiting. When individual h enters into a node j, it will
be assigned a waiting time tw that is drawn from a heavy-
tailed distribution p�tw�� tw

−�1+��, where ��0 and 1� tw
�Tmax; then, the individual h will wait for tw time steps in
node j before it travels again.

�iii� Returning. After waiting for tw time steps in node j,
the individual h will return back to node i with probability
pback, then start from step �i� again at the next time step;
otherwise, it will travel to another node k that is randomly
selected from the neighboring nodes of node j, followed by
step �ii�.

The local infection dynamics within each node or sub-
population is described by a susceptible-infected-recovered
�SIR� model �19�. In each node i, the subpopulation Ni�t� at
time t is constituted of three compartments: susceptible
�Si�t��, infected �Ii�t��, and recovered �Ri�t��—i.e., Ni�t�
=Si�t�+ Ii�t�+Ri�t�. In the current study, we assume that
Ni�t=0�=n for all nodes i=1,2 , . . . ,N, where n is a constant.
Then Ni�t� will vary with time due to the travel process. The
probability of being infected for each susceptible individual
h in node i at time t is dependent on the number of infected
individuals Ii�t�. Specifically, let pinf be the probability that a
susceptible individual will be infected due to its contact with
exact one infected individual; then, each susceptible indi-
vidual in node i will be infected with probability p=1− �1
− pinf�Ii, and after 	 time steps, the newly infected individual
will turn to the recovered individual permanently. The basic
reproduction number, which is defined as the expected num-
ber of secondary cases generated by one primary case in a
susceptible population, is simply given as R0=npinf	. The
infection dynamics is started with one infective individual
that is randomly selected from the total population and pro-
ceeds in parallel at each time step. For R0�1, the local out-
break will die out quickly. For R0�1 and large enough trav-
eling probability pjump, the initial infectious node may
transmit the disease into other nodes.

III. RESULTS AND DISCUSSION

We have performed extensive numerical simulations of
the metapopulation system without any exogenous interven-
tions with the initial condition of a single infection that is
randomly selected from the whole population. As a necessary
condition, we have chosen n=100, 	=10, and pinf=0.003
such that R0=3 in order to ensure that epidemics of some
nontrivial size occur with nonzero probability. Figures
2�a�–2�d� show four example time series of newly infected
cases with the same configuration of model parameters,
where the spreading processes display two striking features:
�i� the epidemics that succeed in breaking out from their
initial subpopulations either die out quickly before invading
their neighboring subpopulations �Fig. 2�a�� or infect a num-
ber of other subpopulations �Figs. 2�b�–2�d��; �ii� for nonlo-
cal epidemics �Figs. 2�b�–2�d��, the infection curves exhibit

(b)(a)

FIG. 1. �Color online� Degree �a� and edge length �b� distribu-
tions of the metapopulation network of N=104, m=3, �=1.0, and
�=1.0 �squares�, 2.0 �circles�, 3.0 �up triangles�, and 4.0 �down
triangles�.
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stochastic fluctuations at the level of individuals and sub-
populations and have different durations, which can be char-
acterized as the resurgence property �13�. In Figs. 2�e�–2�h�,
we plot the bimodal distributions of epidemic size 
 that is
defined as the infection fraction during an epidemic for dif-
ferent values of �, from which we can see that the epidemic
size distributions tend toward a single peak near 
=0 as �
increases, corresponding to a decreasing global invasion
probability.

Figure 3 shows the average profiles that display the evo-
lution of the cumulative infected persons over time for dif-
ferent parameter values of � and �. It is observed that the
propagation velocity and the peak value of the cumulative
cases greatly decrease as the increasing � and �. However,
larger � and � also prolong the epidemic persistence of the
infectious diseases.

In order to investigate the impact of travel distance distri-
bution on the infection spreading, we measure the survival
probability P�
�
c�, which is defined as the fraction of
simulations that the epidemic size 
 is greater than a critical
value 
c and the expected epidemic size �
� versus the
exponent � of the travel distance distribution, as shown in
Fig. 4�a�. The curves are very similar in shape; i.e., they all
decrease smoothly as the increasing �. This result can be
explained as follows. According to Fig. 1�b�, the increase of
� results in fewer long-range connections between nodes

�subpopulations�, which restricts the scope of human travel
to protect the network from epidemic spreading. For the
travel distance distribution p�r��r−�1+�� �−1���2�, we
can calculate the characteristic travel distance �r� as follows:

�r� = 	
rmin

rmax

p�r�rdr

=

�

1 − �

rmax
1−� − rmin

1−�

rmin
−� − rmax

−� , − 1 � � � 2 and � � 0,1,

�rmax − rmin�/ln
rmax

rmin
, � = 0,

1

rmin
−1 − rmax

−1 ln
rmax

rmin
, � = 1,

�
�4�

where �=�−2, rmax=�2 /2, and rmin=1 /N is the mean mini-
mum distance between nodes and treated as a constant deter-
mined only by the system size N. Figure 4�b� shows the
curve of ln�r� versus �, which is similar in shape as the curve
of P�
�
c� versus � in Fig. 4�a�. This result indicates that
there is some positive relevance between the survival prob-
ability and the characteristic travel distance. In Fig. 4�b� we
depict the rescaled survival probability as a function of �,
which exhibits a linear dependence and can be expressed as
the empirical formula P�
�
c��e−� ln��r��. In �14�, the au-
thors declared that the global survival probability is mainly
determined by the basic reproductive number R0, the mobil-
ity rate pjump, and the network heterogeneity. Here, our re-
sults demonstrate that the spatial mode of human travel is
also an important factor for epidemic spreading.

Figure 5�a� reports the behavior of the survival probability
P�
�
c� as a function of the exponent � of the waiting time
distribution with two different maximal waiting time Tmax.
The curves show an initial increase, reach the peak at �
�0.3 for Tmax=365 and ��0.4 for Tmax=730, respectively,
and then decrease linearly as � increases. Similarly, we plot
the rescaled characteristic waiting time �tw� /	 as well as the
rescaled survival probability P�
�
c� / ��tw� /	� versus the
exponent �, where �tw�=1

Tmaxp�tw�twdtw, as shown in Fig.

FIG. 2. �Color online� �a�–�d� Example time series of newly
infected cases, where, in all cases, simulation parameters are N
=104, m=3, n=100, �=1.0, �=2.6, �=0.6, pjump=0.001, pback

=1.0, pinf=0.003, Tmax=365, and 	=10. �e�–�h� The epidemic size
distributions generated from 5000 simulations of the model for dif-
ferent values of �=1.0 �e�, 2.0 �f�, 3.0 �g�, and 4.0 �h�, where in all
cases, the other parameters are the same as those in �a�–�d�.

(b)(a)

FIG. 3. �Color online� Evolution of the cumulative number of
infected persons over time that averaged over 1000 simulations for
different parameter values of � and �. �a� �=1.0 �squares�, 2.0
�circles�, 3.0 �triangles up�, 4.0 �triangles down�, and �=0.6. �b�
�=0.2 �squares�, 0.4 �circles�, 0.6 �triangles up�, 0.8 �triangles
down�, and �=2.6. The other parameters for both �a� and �b� are
N=104, m=3, n=100, �=1.0, pjump=0.001, pback=1.0, pinf=0.003,
Tmax=365, and 	=10.

(b)(a)

FIG. 4. �Color online� �a� Survival probability P�
�
c�
�squares� and the corresponding expected epidemic size �
�
�circles� versus the exponent �, where 
c=0.025 and �
� is aver-
aged over all 
�
c. Each point is generated from 5000 simulations
of the model, with simulation parameters N=104, m=3, n=100, �
=1.0, �=0.6, pjump=0.001, pback=1.0, pinf=0.003, Tmax=365, and
	=10. �b� Curves for the rescaled characteristic travel distance �r�
�squares� and the rescaled survival probability ln�P�

�
c� / �ln��r���� �circles� versus �. Here, �r� is given by Eq. �4�.
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5�b�. It can be noticed that P�
�
c� reaches the peak when
�tw� is much larger than the infective period 	—i.e., at
�tw� /	�3 or more. Another noteworthy phenomenon is that
the rescaled survival probability P�
�
c� / ��tw� /	� is lin-
early dependent on the exponent �, which leads to P�

�
c����tw� /	.

In most previous studies, the human mobility process is
based on the Markovian assumption that at each time step all
individuals can travel with the same traveling probability
without having memory of their origin. This assumption is
clearly refuted by our daily experience. In the real world,
individuals usually return to their original dwelling places
after they have visited a number of destinations. This can be
an effective mechanism to limit the scope of activities of
individuals during a certain fixed time duration in order to
reduce the risk of the epidemic spreading. For this reason, we
consider the memory effects of individuals—that, once the
individuals travel, they will return to the place of residence
with probability pback. The simulation result is shown in Fig.
6, where the survival probability grows approximately lin-
early as the return probability decreases—i.e., P�
�
c�
��1− pback�. This result confirms that it is not appropriate to
apply the Markovian assumption to the human travel process
in models of epidemic spreading. For example, the survival

probability at pback=0 corresponds to the case of the Mar-
kovian assumption, which is obviously overestimated com-
pared to the case of pback�0.

Finally, we have focused on the strategies for mitigating
the effect of contagious disease outbreaks. Many nonpharma-
ceutical measures, such as case isolation, household quaran-
tine, exit and entry screening, contact tracing, and travel re-
strictions, have been considered the commonly used
prevention and containment strategies in the event of an epi-
demic or pandemic �7,20–23�. However, these measures can
inflict significant negative impact on social and economic
systems, and some of them are still controversial. So it is
important to evaluate the effect of these measures on the
spatial and temporal spread of contagious diseases, espe-
cially when the early recognition of the virus is ineffective.
In the current work, we have investigated two control strat-
egies, respectively: close N�n largest degree nodes and shut
off Nm�l longest edges. The former corresponds to the clo-
sure of schools, workplaces, etc., and the latter corresponds
to travel restrictions. According to Figs. 4–6, implementation
of these two strategies is beneficial for epidemic control
since it can restrict the scope of human travel. Figure 7
shows that P�
�
c� is markedly decreasing with the in-
creasing �n and �l. For example, when �n�0.03 or �l
�0.15 the survival probability P�
�
c� will be reduced to
below 0.025. It is concluded that both strategies have signifi-
cant influence on the epidemic spreading, which proves the
effectiveness of the practical measures for epidemic
spreading—i.e., school or workplace closure and travel re-
strictions in dealing with SARS �24–28�.

In order to compare the above two control strategies, we
consider the average distance on edges that emanate from a
node i with degree ki

di�ki� =
1

ki
�
j�

dij , �5�

where dij is the distance on the edge that connects node i and
j, and  represents the neighborhood of node i. The spatial
metapopulation network gives rise to positive correlation be-
tween the degree of node and the average edge distance to its
neighbors, as shown in Fig. 8. This result indicates that clos-
ing high-degree nodes and shutting off long-distance edges

(b)(a)

FIG. 5. �Color online� �a� Survival probability P�
�
c� as a
function of � for maximal waiting time Tmax=365 �squares� and
730 �circles�, where 
c=0.025. Each point is generated from 5000
simulations of the model, with simulation parameters N=104, m
=3, n=100, �=1.0, �=2.6, pjump=0.001, pback=1.0, pinf=0.003,
and 	=10. �b� Curves for the rescaled mean waiting time �tw� /	
�solid squares for Tmax=365 and solid circles for Tmax=730� and the
rescaled survival probability P�
�
c� / ��tw� /	� �open squares for
Tmax=365 and open circles for Tmax=730� versus �.

FIG. 6. Survival probability P�
�
c� as a function of pback,
where 
c=0.025. Each point is generated from 5000 simulations of
the model, with simulation parameters N=104, m=3, n=100, �
=1.0, �=2.6, �=0.6, pjump=0.001, pinf=0.003, Tmax=365, and 	
=10.

(b)(a)

FIG. 7. Effects of the epidemic control strategies on the survival
probability P�
�
c� where 
c=0.025. �a� Close N�n largest de-
gree nodes. �b� Shut off Nm�l longest edges. Each point is gener-
ated from 5000 simulations of the model, with simulation param-
eters N=104, m=3, n=100, �=1.0, �=2.6, �=0.6, pjump=0.001,
pinf=0.003, pback=1.0, Tmax=365, and 	=10.
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have actually more or less the same effects on epidemic
spreading.

IV. CONCLUSIONS

The objective of this research is to set up a practical
framework to explore the effects of human travel patterns on
the spatiotemporal dynamics of large-scale epidemics. We
introduce a heterogeneous spatial metapopulation network
model, which is inspired by the spatial network model and
the metapopulation model to represent the dynamical popu-
lation structure due to the human travel process, where the
travel distance and the waiting time between displacements
obey heavy-tailed distributions and the effects of the memory

of their origin have been considered. Each node of the spatial
metapopulation network represents a subpopulation, and the
degree distribution of the network can be tuned to be power
law or exponential. The edge length obeys the heavy-tailed
distribution, which is used to represent the distribution of
human travel distance. In each subpopulation, we take the
SIR model as a simple description of the local infection dy-
namics.

We then perform extensive numerical simulations of the
above model and measure the survival probability and ex-
pected epidemic size for different configuration of the human
travel patterns. We obtain the empirical relationships be-
tween the survival probability and the distribution of travel
distance and the waiting time, as well as the memory effect.
The results show that the occurrence probability of global
outbreaks or the survival probability is significantly depen-
dent on the characteristic travel distance, the characteristic
waiting time, and the memory effects of human travel.

Finally, we present some preliminary simulation results of
the epidemic control strategies. Two strategies have been in-
vestigated, i.e., closing a fraction of the largest degree nodes
and shutting off some longest edges. Results show that both
strategies are equally effective in inhibiting the spread of
infectious diseases.
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